MATH2050C Selected Solution to Assignment 9

Section 4.3

(3) Let $M>0$ be given. We take $\delta=1 / M^{2}$. Then for $x, 0<|x|<\delta$,

$$
\frac{1}{\sqrt{x}}>\frac{1}{\sqrt{\delta}}=M
$$

so $\lim _{x \rightarrow 0^{+}} 1 / \sqrt{|x|}=\infty$.
(5a) The right hand limit is ∞. (More precisely, the right hand limit does not exist; it diverges to ∞.) Let $M>0$. Choose $\delta=1 / M$. Then for $x, 1<x<1+1 / M$,

$$
\frac{x}{x-1} \geq \frac{1}{x-1}>M
$$

(5b) The limit does not exist. The right limit diverges to ∞ and the left limit diverges to $-\infty$. For $M>0$. Choose $\delta=\min \{1 / 2,1 /(2 M)\}$. Then for $x, 0<x-1<\delta$, we have $x>1-\delta \geq 1-1 / 2=1 / 2$. Thus,

$$
\frac{x}{x-1} \geq \frac{1 / 2}{x-1}>\frac{1}{2 \delta} \geq \frac{1}{2 \times M / 2}=M
$$

which shows that $\lim _{x \rightarrow 1^{+}} x /(x-1)=\infty$. Similarly, one can show that $\lim _{x \rightarrow 1^{-}} x /(x-1)=-\infty$.
(5h) The limit exists and is equal to -1 . For $x>0$,

$$
0 \leq\left|\frac{\sqrt{x}-x}{\sqrt{x}+x}-(-1)\right|=\left|\frac{2 \sqrt{x}}{\sqrt{x}+x}\right| \leq \frac{2 \sqrt{x}}{x}=\frac{2}{\sqrt{x}} .
$$

By Squeeze Theorem,

$$
0 \leq \lim _{x \rightarrow \infty} \frac{\sqrt{x}-x}{\sqrt{x}+x} \leq \lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0 .
$$

Supplementary Problems

Justify your answers in the following problems.

1. Evaluate

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Solution. Use $\left(x^{2}-4\right) /(x-2)=(x-2)(x+2) /(x-2)=x+2$ for $x \neq 2$, we have

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2}(x+2)=4 .
$$

2. Evaluate

$$
\lim _{x \rightarrow-3} \frac{x^{2}-2 x-15}{x+3}
$$

Solution. Use $x^{2}-2 x-15=(x+3)(x-5)$, we have $\frac{x^{2}-2 x-15}{x+3}=\frac{(x+3)(x-5)}{x+3}=x-5$ as long as $x+3 \neq 0$. Therefore,

$$
\lim _{x \rightarrow-3} \frac{x^{2}-2 x-15}{x+3}=\lim _{x \rightarrow-3}(x-5)=-8
$$

3. Evaluate

$$
\lim _{x \rightarrow \infty} \frac{\cos 1 / x}{x}
$$

Solution. Observe that $|\cos 1 / x| \leq 1$ for all x. For $\varepsilon>0$, take $K=1 / \varepsilon$. Then

$$
\left|\frac{\cos 1 / x}{x}\right| \leq \frac{1}{x}<\varepsilon, \quad \forall x>K
$$

We conclude that the limit is equal to 0 .
4. Find $\lim _{x \rightarrow 0^{+}} \frac{5 x-\sqrt{x}}{\sqrt{x}-x^{3}}$ for $c=0^{+}$and ∞.

Solution (a)

$$
\lim _{x \rightarrow 0^{+}} \frac{5 x-\sqrt{x}}{\sqrt{x}-x^{3}}=\lim _{x \rightarrow 0^{+}} \frac{5 \sqrt{x}-1}{1-x^{5 / 2}}=\frac{\lim _{x \rightarrow 0^{+}}(5 \sqrt{x}-1)}{\lim _{x \rightarrow 0^{+}}\left(1-x^{5 / 2}\right)}=-1
$$

(b) For $x \geq 1$,

$$
\left|\frac{5 x-\sqrt{x}}{\sqrt{x}-x^{3}}\right|=\left|\frac{5 \sqrt{x}-1}{1-x^{5 / 2}}\right| \leq \frac{5 \sqrt{x}}{x^{5 / 2}-1}=\frac{5}{x^{2}} \frac{1}{1-x^{-5 / 2}}
$$

As

$$
\lim _{x \rightarrow \infty} \frac{5}{x^{2}} \frac{1}{1-x^{-5 / 2}}=0
$$

by Squeeze Theorem

$$
\lim _{x \rightarrow \infty} \frac{5 x-\sqrt{x}}{\sqrt{x}-x^{3}}=0
$$

5. Find $\lim _{x \rightarrow c} x^{3} e^{1 / x}$ where $c=0^{+}, 0^{-}, \infty$, and $-\infty$.

Solution (a) From $e^{x}=\sum_{k=0}^{\infty} x^{k} / k$! we get $e^{x} \geq x^{4} / 4$! for $x \geq 0$. Therefore, $x^{3} e^{1 / x} \geq$ $x^{3}(1 / x)^{4} / 24=1 / 24 x$ and

$$
\lim _{x \rightarrow 0^{+}} x^{3} e^{1 / x} \geq \frac{1}{24} \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
$$

(b) For $x<0, e^{1 / x}=\frac{1}{e^{1 /|x|}} \leq 1$. Therefore,

$$
\left|x^{3} e^{1 / x}\right| \leq|x|^{3} \rightarrow 0
$$

as $x \rightarrow 0^{-}$.
(c) Using $e^{x} \geq 1$ for $x \geq 0, x^{3} e^{1 / x} \geq x^{3}$, hence

$$
\lim _{x \rightarrow \infty} x^{3} e^{1 / x}=\lim _{x \rightarrow \infty} x^{3}=\infty
$$

(d) Changing x to $-x$, this limit is equal to $-\lim _{x \rightarrow \infty} x^{3} e^{-1 / x}$. As $e^{-1 / x}$ approaches $e^{0}=1$ as $x \rightarrow \infty$. We have $\lim _{x \rightarrow \infty}-x^{3} e^{-1 / x}=-\lim _{x \rightarrow \infty} x^{3} \lim _{x \rightarrow \infty} e^{-1 / x}=-\infty$.

