MATH2050C Selected Solution to Assignment 9

Section 4.3

(3) Let M > 0 be given. We take $\delta = 1/M^2$. Then for $x, 0 < |x| < \delta$,

$$\frac{1}{\sqrt{x}} > \frac{1}{\sqrt{\delta}} = M \; ,$$

so $\lim_{x\to 0^+} 1/\sqrt{|x|} = \infty.$

(5a) The right hand limit is ∞ . (More precisely, the right hand limit does not exist; it diverges to ∞ .) Let M > 0. Choose $\delta = 1/M$. Then for x, 1 < x < 1 + 1/M,

$$\frac{x}{x-1} \ge \frac{1}{x-1} > M \ .$$

(5b) The limit does not exist. The right limit diverges to ∞ and the left limit diverges to $-\infty$. For M > 0. Choose $\delta = \min\{1/2, 1/(2M)\}$. Then for $x, 0 < x - 1 < \delta$, we have $x > 1 - \delta \ge 1 - 1/2 = 1/2$. Thus,

$$\frac{x}{x-1} \ge \frac{1/2}{x-1} > \frac{1}{2\delta} \ge \frac{1}{2 \times M/2} = M ,$$

which shows that $\lim_{x\to 1^+} x/(x-1) = \infty$. Similarly, one can show that $\lim_{x\to 1^-} x/(x-1) = -\infty$.

(5h) The limit exists and is equal to -1. For x > 0,

$$0 \le \left|\frac{\sqrt{x} - x}{\sqrt{x} + x} - (-1)\right| = \left|\frac{2\sqrt{x}}{\sqrt{x} + x}\right| \le \frac{2\sqrt{x}}{x} = \frac{2}{\sqrt{x}} \ .$$

By Squeeze Theorem,

$$0 \le \lim_{x \to \infty} \frac{\sqrt{x} - x}{\sqrt{x} + x} \le \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0 \ .$$

Supplementary Problems

Justify your answers in the following problems.

1. Evaluate

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}.$$

Solution. Use $(x^2 - 4)/(x - 2) = (x - 2)(x + 2)/(x - 2) = x + 2$ for $x \neq 2$, we have $\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} (x + 2) = 4.$ 2. Evaluate

$$\lim_{x \to -3} \frac{x^2 - 2x - 15}{x + 3}$$

Solution. Use $x^2 - 2x - 15 = (x+3)(x-5)$, we have $\frac{x^2 - 2x - 15}{x+3} = \frac{(x+3)(x-5)}{x+3} = x-5$ as long as $x + 3 \neq 0$. Therefore,

$$\lim_{x \to -3} \frac{x^2 - 2x - 15}{x + 3} = \lim_{x \to -3} (x - 5) = -8.$$

3. Evaluate

$$\lim_{x \to \infty} \frac{\cos 1/x}{x}$$

Solution. Observe that $|\cos 1/x| \le 1$ for all x. For $\varepsilon > 0$, take $K = 1/\varepsilon$. Then

$$\left|\frac{\cos 1/x}{x}\right| \le \frac{1}{x} < \varepsilon , \quad \forall x > K.$$

We conclude that the limit is equal to 0.

4. Find $\lim_{x\to 0^+} \frac{5x - \sqrt{x}}{\sqrt{x} - x^3}$ for $c = 0^+$ and ∞ . Solution (a)

$$\lim_{x \to 0^+} \frac{5x - \sqrt{x}}{\sqrt{x} - x^3} = \lim_{x \to 0^+} \frac{5\sqrt{x} - 1}{1 - x^{5/2}} = \frac{\lim_{x \to 0^+} (5\sqrt{x} - 1)}{\lim_{x \to 0^+} (1 - x^{5/2})} = -1$$

(b) For $x \ge 1$,

$$\frac{5x - \sqrt{x}}{\sqrt{x} - x^3} \bigg| = \bigg| \frac{5\sqrt{x} - 1}{1 - x^{5/2}} \bigg| \le \frac{5\sqrt{x}}{x^{5/2} - 1} = \frac{5}{x^2} \frac{1}{1 - x^{-5/2}}$$

As

$$\lim_{x \to \infty} \frac{5}{x^2} \frac{1}{1 - x^{-5/2}} = 0 ,$$

by Squeeze Theorem

$$\lim_{x \to \infty} \frac{5x - \sqrt{x}}{\sqrt{x} - x^3} = 0 \; .$$

5. Find $\lim_{x\to c} x^3 e^{1/x}$ where $c = 0^+, 0^-, \infty$, and $-\infty$. **Solution** (a) From $e^x = \sum_{k=0}^{\infty} x^k/k!$ we get $e^x \ge x^4/4!$ for $x \ge 0$. Therefore, $x^3 e^{1/x} \ge x^3(1/x)^4/24 = 1/24x$ and

$$\lim_{x \to 0^+} x^3 e^{1/x} \ge \frac{1}{24} \lim_{x \to 0^+} \frac{1}{x} = \infty \; .$$

(b) For x < 0, $e^{1/x} = \frac{1}{e^{1/|x|}} \le 1$. Therefore,

$$|x^3 e^{1/x}| \le |x|^3 \to 0$$
,

- as $x \to 0^-$.
- (c) Using $e^x \ge 1$ for $x \ge 0$, $x^3 e^{1/x} \ge x^3$, hence

$$\lim_{x \to \infty} x^3 e^{1/x} = \lim_{x \to \infty} x^3 = \infty \; .$$

(d) Changing x to -x, this limit is equal to $-\lim_{x\to\infty} x^3 e^{-1/x}$. As $e^{-1/x}$ approaches $e^0 = 1$ as $x \to \infty$. We have $\lim_{x\to\infty} -x^3 e^{-1/x} = -\lim_{x\to\infty} x^3 \lim_{x\to\infty} e^{-1/x} = -\infty$.